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Fig. 1:  Layout of MICE.
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Content
  Introductory material:

  Description of the geometry.
  Cast3M (Finite Elements solver) and assumptions.
  Material properties.
  Cryocoolers characteristics.
  Heat by radiation: super-insulation.

  Steady state Analysis.

  Recommendations

  References.
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Description of the geometry
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Code 3D Finite Elements: Cast3M
  Code CasT3M:  non-linear  steady  state  model.  Solver  based on Theta-

method solving the transient heat balance equation with the heat capacity 
set  to  zero.  Convergence  in  10  steps  with  a  criterion  equal  to  1e-6, 
408237 nodes.

  Assumptions:
  Perfect connections between pieces.
  Steady state.
  Fixed temperature at the boundaries (300 K and 4.2 K) and fixed heat flux (current leads).
  Normalized thermal conductivities and specific heat capacities for some geometries.
  Material properties as a function of temperature (4 K to 300 K).

  Normalized thermal  conductivity  and specific  heat  capacity  taking into 
account the geometrical  differences between the model  and the actual 
geometry:
  Thermal conductivity:

  Specific heat capacity:
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Boundary conditions and geometrical details
  Fixed  temperatures  at  boundaries:  tubes,  G10  straps,  supports, 

cryocoolers.

  Geometrical limitations due to the complexity of some of the parts. The 
first principle is respected (Qsink = Qradiation + Qcond). However, the local 
thermal profile is expected to differ.
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Material properties

  Fit  equations  are  compared  to 
data  found  in  the  litterature 
showing  a  good  overall 
agreement within 15 %.

  Data sources: see the last slide 
(References).
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Implementation of super-insulation

  The radiation heat load through super-insulation layers was simulated 
as a heat exchange coefficient (equivalent thermal conductivity: 5e-5 
W/m-K [See J.W. Ekin]):

  The total thickness of the super-insulation, emli, is given by:

  Where the number of layers, nlayers, is equal to 50.

  The optimum thickness per number of layers given by J.W. Ekin (p. 38), 
npct,  is equal to 30 layers per centimeter.
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Cryocoolers: operating points

PT415 First stage Second stage
Flux (W) 1.5 70

Temperature (K) 4.5 60
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AL330 Single stage

Flux (W) 170
Temperature (K) 50



Current lead: copper and HTS (1/3)

  Two questions are addressed:

  Expected temperature profile in operation and fault mode.
  Minimum heat flux to extract at the connection between the copper and HTS lead.

  The second question deals with the necessity to keep the HTS lead 
below a certain temperature which depends on current and magnetic 
field.

  In the subsequent analysis, the critical surface of the HTS lead is not 
taken into account.
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Copper and HTS leads (2/3)

  Heat balance equation:

  Analytical solution:

  Flux conservation:

  Maximum temperature (HTS):

  Ratio length to cross-section area, l/A:
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Assumptions:

 Adiabatic conditions.
 Steady state.
 Uniform cross-section area per 
section.
 Clamped temperatures at boundaries.
 Average thermal conductivity and 
resisitivity.
 Quasi-static quench over the entire 
length of the HTS lead.



Copper and HTS leads (3/3)
  Minimum flux to keep the 

connection below 70 K is 
equal to 7.8 W.

  “Sensitivity”  of  the 
connection  temperature 
during fault: 1.25 K/A

  No matter how good is the 
connection:  necessity  of 
having voltage taps across 
the HTS leads
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HTS matrix current (A) 0 2 4 6 8

Temperature at connection (K) 67 68 70 73 77

Max T (K) 290 290 290 290 344

z/l @ max T (%) 0 0 0 0 80
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Heat loads and heat sinks
  Heat sinks:

  3 pulsed tubes:

  #1: 65 K
  #2: 65 K
  #3: 70 K

  1 Single stage cryocooler (not yet in use): 60 K

  Here are the heat loads for the following simulations:

  Conduction:
  G10 straps: 300 K/4.2 K
  End supports (Stainless steel and G10): 300 K
  Current leads (It = 0 A): 4 W.

  Radiation through super-insulation:
  Source: enclosing vessel at 300 K.
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Results: full solution on existing setup
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Thermal shield
  The question being addressed:

  Do we need to replace the actual shield 
with  a  shield  having  a  better  thermal 
condutivity.

  Fixed  temperature  at  the 
cryocoolers:  65  K  and  70  K  (see 
next slide).

  Despite  a  large  difference  in  the 
thermal  conductivity  (factor  equal 
to  4  at  100  K),  the  temperature 
diferent is less than 4 K.

  The actual thermal shield in the 
assumptions  of  the  model 
should be adequate.
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Cryocooler towers
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  The question being addressed:

  Influence of the choice of material on the 
temperature drop across the towers

  Fixed temperature at cryocoolers.

  A material with good thermal 
conductivity is beneficial.
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Copper plate and fourth cryocooler (2/2)
  The questions being addressed:

  Can we explain the temperature at the lead connection?

  an  a  fourth  cryocooler  help  improving  the  temperature  profile  at  the  lead 
connections?

  The fourth cryocooler will help sinking a part of the power coming 
from the leads freeing the third one.
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Fourth cryocooler copper connection

  Temperature drop at the copper 
connection, due to heat load.

  Pure conduction:

  Solution:

  Fourth cryocooler characterisitic:
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φ = −Ak
dT

dz

T (z) =
|φ|
Ak

z + T0 (|φ|)

T0 (φ) = aφ2 + b|φ| + c

Heat flux, Φ (W) 100

a (K/W2) 5.93e-4

b (K/W) 0.106

c (K) 14.8

Section (m2) 0.0038

Length (m) 0.2

Sink temperature, T0 (K) 31.4

ΔT (z=0.2 m) (K) 13.2

T @ Cu plate (K) 44.5

Assumptions:
-Steady state
-The  cryocooler  takes 
full  load  assuming  no 
other coolers.

T0

Φ



Recommendations
  “Letting cost and time frame aside”.

  Based on the previous analysis, the following items may be addressed:

  Improvement  of  the  connection  between  the  copper  plate  and  the 
thermal shield: material of better thermal conductivity, minimizing the 
distance, thicker walls.

  A quality control may be imlemented to ensure proper welds between 
the various components critical to transfer heat from the shield to the 
cryocoolers: maximum contact areas, full solder penetration)

  The current leads location may be better optimized to share the load 
over all the cryocoolers.

  Appropriate location and number of thermal sensors and voltage taps 
must be further estimated: calibration of thermometry, defining salient 
parameters, ensuring that critical joints and components are covered.
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